Section 5.4: POLYNOMIALS IN SEVERAL VARIABLES

When you are done with your homework you should be able to...

- π Evaluate polynomials in several variables
- π Understand the vocabulary of polynomials in two variables
- π Add and subtract polynomials in several variables
- π Multiply polynomials in several variables

WARM-UP:

Evaluate the polynomial:

$$x^{3}y + 2xy^{2} + 5x - 2$$
; $x = -2$ and $y = 3$

EVALUATING A POLYNOMIAL IN SEVERAL VARIABLES

1	the given value for each _	·
2. Perform the resulting		using the
of	·	

DESCRIBING POLYNOMIALS IN TWO VARIABLES

In general, a	in	
and, contains the	of one or more	in
the form	The constant,, is the	
The	, and, represent	
numbers. The	of the	

Example 1: Determine the coefficient of each term, the degree of each term, and the degree of the polynomial.

$$8xy^4 - 17x^5y^3 + 4x^2y - 9y^3 + 7$$

ADDING AND SUBTRACTING POLYNOMIALS IN SEVERAL VARIABLES

_____ in _____ variables are added by

Example 2: Add or subtract.

a.
$$(x^3 - y^3) - (-4x^3 - x^2y + xy^2 + 3y^3)$$

b.
$$(7x^2y + 5xy + 13) + (-3x^2y + 6xy + 4)$$

MULTIPLYING POLYNOMIALS IN SEVERAL VARIABLES

The _____ of ____ the basis of _____ can be done _____

by _____ and ____

_____ on ____ with the ____

Example 3: Multiply.

a.
$$(5xy^3)(-10x^2y^4)$$

c.
$$(x-2y^4)(x+2y^4)$$

b.
$$-x^7y^2(x^2+7xy-4)$$

d.
$$(x^2 - y)^2$$